A Stochastic Approach to STDP (Spike Timing Dependent Plasticity)

We present a digital implementation of the Spike Timing Dependent Plasticity (STDP) learning rule. The proposed digital implementation consists of an exponential decay generator array and a STDP adaptor array. On the arrival of a pre- and post-synaptic spike, the STDP adaptor will send a digital spike to the decay generator. The decay generator will then generate an exponential decay, which will be used by the STDP adaptor to perform the weight adaption. The exponential decay, which is computational expensive, is efficiently implemented by using a novel stochastic approach, which we analyse and characterise here. We use a time multiplexing approach to achieve 8192 (8k) virtual STDP adaptors and decay generators with only one physical implementation of each. We have validated our stochastic STDP approach with measurement results of a balanced excitation/inhibition experiment. Our stochastic approach is ideal for implementing the STDP learning rule in large-scale spiking neural networks running in real time.

The entire paper can be read here.

This entry was posted in Machine Learning (Narrow Artificial Intelligence) and tagged , . Bookmark the permalink.