From Fight Aging!: A Look Back at 2015 in Longevity Science

I think that in years to come, we’ll consider 2015 to be the point at which things really start to move for SENS rejuvenation research. It has to be said that medical research moves slowly at the best of times. It takes a good long run-up to show results, and it took a decade for SENS to grow from an idea and a few interested researchers to its present state of a foundation, the support of leaders in the research community, a loose network of research groups, and a few newly formed startup companies. It is perhaps an appropriate year for the unveiling of the Methuselah 300 monument, listing the donors who provided the initial funds and support to start this ball rolling.

Senescent cell clearance as a treatment for degenerative is having its breakout year. The Methuselah Foundation and SENS Research Foundation provided seed funding to Oisin Biotechnology for work in mice on a method of clearing senescent cells. Meanwhile another research group spent 2015 uncovering tissue specific drug candidates that tip senescent cells into the mode of programmed cell death called apoptosis, demonstrating this in mice with a couple of different drugs, producing results good enough to prove that meaningful health benefits result from a single treatment in older animals. This work should once and for all settle that SENS advocates have been right for the last decade, and the rest of the research community should have listened years ago.

It has also been a breakout year for gene therapy, but in a much bigger way. CRISPR has reached critical mass, and we are going to see an avalanche of gene therapies taking place in the years ahead both in trials and outside the regulatory system. A demonstration of this point was made by the BioViva CEO, who used medical tourism and the connections of a biotech startup company to undergo telomerase and follistatin gene therapies. Five years from now, it won’t take any connections – just look up a reputable clinic outside the US and take a trip. If you look back at the progression of stem cell therapies since the turn of the century, that is exactly what is going to happen for the first gene therapies. Very few of the plausible candidates are what I’d call rejuvenation therapies at this point, more compensatory approaches that can spur additional stem cell activity or muscle growth or the like, but the growth in expertise in gene therapy in the field as a whole is a good thing for the future of SENS treatments that do require gene therapy.

Glucosepane cross-links are an important contribution to aging in humans – they are a part of the reason that skin and blood vessels lose their elasticity. The former is unfortunate, the latter ultimately fatal. For some years now the SENS Research Foundation has been funding efforts to develop the tools needed to work with glucosepane in cells and tissues, and this year a first success was published in a prestigious journal: a reliable method of synthesizing glucosepane as needed, a very important part of the toolkit.

Another lengthy SENS research program now blossoming is the use of allotopic expression of mitochondrial genes. The researchers originally funded by the Methuselah Foundation and SENS Research Foundation formed a company, Gensight, that is now well on its way to clinical application of this technology for inherited mitochondrial disease. That foundation of practice and experience will hopefully create a much better basis to finish up the work for all mitochondrial genes and the treatment of aging in the years ahead.

The long-running efforts by SENS researchers to find bacterial enzymes capable of breaking down some of the waste chemicals that form lipofuscin, a mix of metabolic wastes that clogs up lysosomes in old cells, have reached the point of commercial development. Candidate drugs have been licensed out to newly formed Human Rejuvenation Technologies, Inc.. Now we wait and see how that goes, but in general you should consider these sorts of deals a way to bring in more money for later stage research – it’s just less visible until it reaches its goals.

The rest of the article can be read here.

This entry was posted in Science_Technology and tagged , . Bookmark the permalink.